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1. Introduction 
The increasing trend on the part of chemists to endeavor to 

interpret the thermodynamic behavior of chemical systems in 
fluid media in terms of molecular parameters and intermolecular 
interactions has resulted in a need for new statistical thermo- 
dynamic approaches to fluids and fluid mixtures. While a number 
of such approaches have been developed, a particularly useful 
and intuitively attractive approach which yields important insight 
into the nature of such fluids is the scaled particle theory.’-1° 
Although this theory was originally developed as a formal sta- 
tistical mechanical theory of dense hard-sphere fluids, it became 
apparent that it provided relations which were relevant to the 
behavior of real fluids. The present article is not a review of the 
formalism of the scaled particle theory, but rather is an effort 
to select those aspects of the theory which make it important 
in understanding qualitatively and semiquantitatively the im- 
portant contributions to the thermodynamic properties of non- 
aqueous and aqueous solutions. These solution properties have 
always been of interest to physical chemists, but in recent years 
there has been an unprecedented interest in solution thermo- 
dynamics by physical organic chemists, by inorganic chemists, 
by electrochemists, and, most notably, by biochemists. This 
interest stems in part from the importance of solvent effects on 
reaction rates and mechanisms, on the nature of ionic interac- 
tions in electrolyte solutions, and on the nature of hydrophobic 
interactions and the conformational properties of proteins and 
other biologically important molecules. Particular emphasis will 
be placed on the nature of dilute solutions, that is, on solutions 
in which the solubility of a substance is directly proportional to 
either the pressure or activity of the substance. These solutions 
are said to obey Henry’s law, and one can show that the only 
molecular interactions that influence the system are the inter- 
actions of single solute molecules with the solvent. Experimental 
and theoretical studies of solutions obeying Henry’s law give 
direct information about this interaction. If solubility studies of 

the deviations from Henry’s law are made, then molecular in- 
formation can be obtained involving not only the solute-solvent 
interaction but also the interaction between two or more solute 
molecules. 

The following sections will (a) outline those aspects of the 
thermodynamics of solutions which are of particular interest in 
understanding intermolecular interactions in fluids, (b) develop 
those aspects of the scaled particle theory of fluids which will 
be of importance in studying solubility phenomena, and (c) apply 
the scaled particle theory to the interpretation of data pertaining 
to aqueous and nonaqueous solutions in terms of molecular and 
thermodynamic parameters. 

11. Theory of Dilute Solutions 
A. Thermodynamics of Dilute Solutions 

The concentration of a solute dissolved in a liquid solvent can 
be expressed as a power series in the activity or fugacity of the 
solute. This power series is given as1’ 

where p2 is the number density of the solute (i.e., the number 
of molecules of solute dissolved per unit volume of solution), f2 

is the fugacity of the solute (this is frequently replaced by the 
pressure of the solute), kTis the Boltzmann constant times the 
absolute temperature, and B2e, B3e etc., are functions of the 
temperature. It is possible to relate the quantities B2e, B3c, etc., 
to the molecular properties of the solute and the solvent through 
the application of the techniques of statistical mechan- 

McMillan and Mayerll in considering the general problem of 
osmotic equilibrium showed that for constant solvent activity 
the coefficients of the terms in ( f2/kT) are analogous to the virial 
coefficients in the virial equation of state of gases. The coeffi- 
cient B2e is the second solute-solvent v i a l  coefficient. These 
virial coefficients can be expressed in terms of integrals involving 
the configurations of one, two, etc., solute molecules and the 
configurations of the various molecules of the solvent. Of par- 
ticular importance in this discussion is B2c. It can be shown 
that12 

jcs.11-13 

BZe = t Io, ( ~ - w s ) / ~ T  - 1) dr; (2) 

where 4 is the position of the Rh solute molecule under con- 
sideration, and W(6) is the average potential energy of the ith 
solute molecule whose center is at 6 and which interacts with 
the solvent. The averaging is over all allowable configurations 
of the solvent. The integral is over the entire volume of the so- 
lution. The importance of this coefficient is that it is dependent 
only upon one solute molecule interacting with the solvent, and 
hence solute-solute interactions do not enter into the first term 
in the expansion given by eq 1. We will see that this result is of 
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great importance to our consideration in the following sec- 
tions. 

Although we will not be concerned in this article with the 
evaluation of B3f, we present a few comments on it for the sake 
of completeness. The integral expressing B3f is considerably 
more complex than that for B2f and is given after a few ap- 
proximations by 

where B2p is the second solute-solvent virial coefficient and 
w2(( ,4)  is the effective pair potential of two solute molecules, 
one located at position ( and the second located at position 4 ,  
The effective pair potential is averaged over all configurations 
of the solvent molecules. The importance of B3p is that it is de- 
pendent only upon the interaction of two solute molecules with 
each other and with the solvent. It can be similarly shown that 
the ith virial coefficient in eq 1 is dependent upon i molecules 
of solute interacting with each other and simultaneously with the 
solvent. 

As can be seen, one can decompose the complex problem 
of solution equilibrium into its simplest parts and study these 
independently. The present article is concerned with a somewhat 
detailed examination of the effect of molecular type and tem- 
perature upon the second solute-solvent virial coefficient, 
B2f * 

The quantity of B2f is directly related to the experimental 
quantity called the Henry law constant which is usually expressed 
as 

(4) 

where f2 is the fugacity of the solute, KH is the Henry law con- 
stant, and X2 is the mole fraction of solute in the solution. Since 
the number density of solute molecules dissolved in a dilute 
solution is related to X2 by 

p2v1 = NX2 (5) 
where Vl is the molar volume of solvent and N is Avogadro’s 
number, we can see that the Henry law constant is given by 

Since B2e represents the probability that a molecule of solute 
be found in the position ( integrated over all possible positions 
in the solvent volume, it can be directly related to a Boltzmann 
equation12-14 

B2f = e-W/Rr (7) 
where W is the reversible work required to dissolve 1 mol of 
solute in an infinite amount of solvent at constant Pand Tor its 
equivalent, the partial molar free energy of the solute at infinite 
dilution. Substitution of this into eq 6 and rearranging yields 

(8) In KH = W/RT+ In ( R T / v l )  

We will obtain this result in a more conventional manner in the 
next section. At this point it is worth noting the relationship be- 
tween KH and B2f and between B2f and W. 

The chemical potential of a solute in a liquid solvent can be 
expressed as15 

- 
where -U2 is the molar potential energy of the solute in the 
solution rglatlve to infinite separation, P is the hydrostatic 
pressure, V2 is the partial molar volume of the solute, V/AZ3 and 
j2  are the partition functions per molecule for the translational 
and internal degrees of freedom of the solute, and N2 is the 
number of solute molecules 9 the volume, V, of the solution. 
For very dilute solutions V = V1, the volume of the solvent, and 
(N2/N1) = X2, the mole fraction of the solute. 

The sum of the two terms on the right-hand side of eq 9 rep- 
resents the reversible work required to introduce one solute 
molecule into a solution of concentration N2/V. For very dilute 
solutions the reversible work required to add a solute molecule 
to the solution is equivalent to that of adding one molecule to the 
pure solvent. It is convenient to consider the process of intro- 
ducing the solute molecule into the solvent as consisting of two 
steps.16-18 

Step 7. The creation of a cavity in the solvent of suitable size 
to accommodate the solute moJecule. The reversible work or 
partial molar Gibbs free energy, Gc, required to do this is identical 
with that required to introduce 1 mol of hard-sphere molecules 
of the appropriate radius such as to produce a mole of cavities 
in the solution. 

Step 2. The introduction into the cavity of a solute molecule 
which interacts with the solvent accgding to some potential law. 
The molar reversible work here, GI, is identical with that of 
charging the hard spheres or cavities introduced in step 1 to the 
required potential: i.e., it is the work associated with giving each 
cavity or hard sphere the proper charge distribution and polar- 
izability to simulat_e a rEaI solute_molecxJe. 

for N2/V 
in eq 9 yields 

p2,soln = 5, + 5, + RTln ( ~ 2 3 / j 2 )  + RTIn (x2/Vl) (10) 
The chemical potential of the solute in a gas phase in equilibrium 
with the solution is given by 

Substitution of Gc + GI for (-4 + PV2) and 

p2,gas = RT In (Li23/ j2)  + RT In ( f2/RT) 

In ( f 2 / X 2 )  = G,/RT+ G i / R T +  In (RT/V1)  

In KH = GJRT + &RT + In (Rr/V,) 

(1 1) 

where f2 is the fugacity of the solute. 
Equating ~ 2 , s o l n  to ~ 2 , g a s  yields 

- 
(12) 

or since for very dilute solutions f2  = K H X ~ ,  

(13) 
The molar heat of solution is 

where ap is the coefficient of thermal expansion of the solvent: 
the partial molar volume of the solute is 

where PT is the isothermal compressibility of the solvent. 

B. Scaled Particle Theory of Fluids 
In a series of papers Reiss, Frisch, Helfand, Lebowitz, and 

T~lly-Smith’-~ have developed a statistical mechanical theory 
of fluids based upon the properties of the exact radial distribution 
function which yields an approximate expression for the re- 
versible work required to introduce a spherical particle into a 
fluid of spherical particles. They consider the case of a system 
of N particles obeying a pairwise additive potential and couple 
one additional particle obeying the same potential to this system 
by the procedure of distance scaling. The coupling procedure 
is used to obtain an expression for the chemical potential of the 
fluid in terms of a function related to the radial distribution 
function for the fluid. 

The essence of the scaled particle theory is that work is re- 
quired to exclude the centers of molecules from any specified 
region of space in a fluid. Consider a fluid consisting of N 
spherically symmetrical molecules possessing a hard core of 
diameter c1 and exerting whatever attractive forces are con- 
sistent with the volume V of the fluid. Imagine now excluding the 
centers of all N molecules from a spherical region of space of 
radius r in the volume V. This region of space would in fact be 
a cavity in the fluid. Suppose we denote the probability that such 
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a cavity exists by po(r,p), where p is the number density of the 
fluid (N/v). The cavity could be created by a statistical fluctua- 
tion, and the probability that such a fluctuation would occur is 
given by12-14 

where W(r,p)  is the reversible work required to produce a cavity 
of radius r is the fluid. Note the similarity of eq 16 and 7. It is clear 
that po(r,p) can be equated with B2p where the solute is a non- 
penetrable cavity or its equivalent a hard sphere solute. The 
scaled particle theory attempts to determine po(r,p) as accurately 
as possible based upon statistical mechanical and geometrical 
arguments. The general approach is to start with a cavity of zero 
radius and allow it to grow or be scaled up to the desired radius 
(see Figure la). 

This is perhaps made more clear if one considers the prob- 
ability of finding a molecular center just outside the cavity radius 
r ,  i.e., of finding the center in the fluid shell of thickness r to r + dr. This probability is given by 4 r ? p G ( r , p )  dr, where pG(r,p) 
is the conditional probability that a molecular center is located 
in that region. The probability that there is no center in this 
spherical shell is simply 1 - 4 r ? p G ( r , p )  d r .  

The probability that there is no molecular center in the range 
0 to r times the probability that there is no center in the range 
r to r + dr is just equal to the probability that there is no center 
in the range 0 to r + dr or 

or 

(d In po(r)/dr) = - 4 r r 2 p G ( r , p )  (18) 

(dW(r ,p) /kT/dr)  = 4 r r 2 p G ( r , p )  (19) 

Referring to eq 16, we find 

and consequently 

W(r,p) /kT = 4 r p  r2G(r ,p)  d r  (20) Jr  
Hence the determination of the reversible work of introducing 
a cavity into a fluid is dependent upon the determination of a 
functional representation of the conditional probability G ( r , p ) .  
Lengthy indicate that an asymptotic expansion in 
l l r  is a suitable representation; thus we can write 

G ( r , p )  = G i ( p ) ( l / r ) i  (21) 
i 

The task is now to evaluate the coefficients Gi(p) ,  and this is 
done by seeking exact relationships that G(r,p) must possess 
and for each such relationship one coefficient Gi can be de- 
termined. 

The first such exact relationship is a particularly interesting 
one. For all values of r I u1/2, one and only one hard-core 
molecule can have its center in the spherical region of radius 
r ,  otherwise the hard cores would have to overlap. The proba- 
bility that a molecular center is in this region is %r6‘p; 
hence 

po = 1 - ‘/3r$p r I a1/2 (22) 

Reference to eq 18 indicates that 
4 
I 

G ( r , p )  = r I a1/2 (23) 
(1 - %r6‘p) 

Substituting eq 18 into eq 20 and carrying out the integration 
yields 

( 2 4 )  Wo(r ,p)  = kT In (1 - %r$p) r I 0112 

a b 

Figure 1. (a) Spherical cavity of radius r caused by a hard-sphere solute 
of diameter u2 in a hard-sphere fluid of molecules of diameter u1. (b) 
A point solute creates a cavity of radius u1/2 by excluding the center 
of all solvent molecules. 

where Wo(r,p) is the reversible work of producing a cavity of 
radius r I a1/2. In a way this is a curious result. A cavity of ra- 
dius a1/2 in a fluid of hard spheres is in fact a point (see Figure 
l b ,  and hence eq 24 with 6‘ replaced by (a1/2)3 represents the 
work required to introduce a point solute into the fluid. Further- 
more, a solute of diameter cr2 requires the creation of a cavity 
of radius r = (ul + u2)/2. Geometrical considerations indicate 
that for 0 < r I u1/2 at most one molecular center can be found 
in the cavity, for u1/2 < r I o1/& at most two molecular 
centers can be found in the cavity, etc., until at r = u1 twelve 
molecules can occupy the defined spherical region. 

There are a host of exact conditions that can be found in ad- 
dition to that of eq 23. These have led to the evaluation of Gi in 
eq 21 through G5.8 It has been shown that G3 is zero and G4 is 
likely to be zero. Examination of eq 20 and 21 indicates that an 
asymptotic expansion for W(r ,p)  of the form 

W(r,p) = KO + K l r  + K 2 6  + K36‘ (25) 

might be an excellent approximation. This incidentally is the 
same form as required in classical thermodynamics, i.e. 

where the term involving P(the pressure) is just the volume work; 
the term involving y (the surface tension) is the surface work 
and the term involving 6 / r  is a term which corrects the surface 
tension for the effect of surface curvature. The only difference 
between these equations is the absence of the constant term 
KO in the thermodynamic equation. Since the thermodynamic 
equation is meant to account for macroscopic cavities, the ab- 
sence of the KO term introduces negligible error but for micro- 
scopic cavities KO is an important term. Three of the exact 
conditions used to evaluate the Gi can also be used to evaluate 
the ICs in eq 25. In the original development of the scaled par- 
ticle theory, the Ks were obtained by expanding W(r,p) about 
r =a1/2 giving 

W(r,p) = Wo + Wor(r  - a1/2) 

1 1 
2 6 

+ -Worr(r - u1/2)2 + - Worrr(r  - u1/2)3 (27) 

where Wo = kT In (1 - ra13p/6) and where the first and second 
derivatives are known to be continuous and hence obtainable 
from eq 24. The coefficient of the cubic term was obtained by 
direct comparison with the thermodynamic equation and hence 
K3 is equal to ‘ATP. After suitable algebraic manipulations one 
obtains 

+ [*+! ( y ) 2 ] R 2 + -  UP R3 (28) 
PkT 1 - y  2 1 - y  
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i = c / a  2 1  

Figure 2. The free energy of cavity formation in water and benzene 
at 298.15 K. 

where y = rpa13/6 is the reduced number density, R = C T ~ / C T ~ ,  

and up is the diameter of the hard-sphere solute molecule such 
that the cavity radius is (al + u2)/2. It is possible by incorporating 
a fourth exact relation to obtain an approximate equation of state 
for a hard-sphere fluid, and consequently the terms in the 
pressure above could also be expressed in terms of yand T. As 
will be mentioned later, for our purposes of investigating the 
solubility of substances in real fluids there is considerable value 
in retaining as many experimentally known properties of the fluid 
(such as p,  P, and their pressure and temperature derivatives) 
as possible. These quantities serve to preserve as much infor- 
mation as possible about the attractive interactions between the 
solvent molecules. In the application of the scaled particle theory 
to solutions, the theory is used primarily as a means of deter- 
mining the reversible work required to introduce a hard-sphere 
molecule into a real fluid whose molecules behave as hard cores 
but whose volume and pressure at a given temperature are de- 
termined by the real intermolecular potentials existing among 
them. 

C. Henry Law Constants 
The Henry law constant provides the basis for understanding 

the properties of dilute solutions because it separates out spe- 
cifically the solute-solvent interactions. As shown in eq 13, the 
Henry law constant can be expressed as 

In K~ = Z,/RT+ $RT+ In (RT/V,) (29) 

where 5, and are the partial molar Gibbs free energy of cavity 
formation and interaction, respectively. The development of the 
scaled particle theory given above was directed at obtaining an 
expression for Gc which is equal to W(R,p) and given by eq 28. 
The hydrostatic pressure in eq 28 can be replaced by the pres- 
sure from the theoretical equation of state for the scaled particle 
theory. As discussed above, it is preferable for the purpose at 
hand to use the experimental value of P rather than the theo- 
retical value for hard-sphere fluid. If the equation of state of the 
real fluid were known from theory, this would of course be pre- 

TABLE 1. Selected Physical Properties of Various Liquid Substances 
at 298.15 K a  

cy x 1024 0 - 
Sub- cm3 p X 103 p p X  105 v1 

stance molecule-' deg-' atm-' cm3/mol y 

Ar 1.63 4.4gb 22.7b 28.66b 0.436b 
cs2 8.57 (0.06)' 1.17 10.73 60.65 0.483 
CCl i  10.49 1.27 10.91 97.09 0.506 

10.32 1.38 9.38 89.40 0.513 
C-CBHIP 10.78 1.20 12.3 108.7 0.523 
n-&H14 11.78 1.39 16.27 131.6 C.502 
n-C8H18 15.44 1.15 12.14 163.5 0.542 
P C ~ F I ~  14.57 1.56 29.98 225.87 0.502 
C6H5CH3 12.33 1.08 9.40 106.8 0.532 
C6H5F 10.28 (1.42)' 1.22 94.03 0.453 
N2H4 3.51 (1.90)' . . . . . .  52.97 0.472 
(CH&CO 8.67 (2.83)' 1.42 12.55 74.05 0.468 
CH30H 3.26(1.66)' 1.20 12.58 40.73 0.395 

58.69 0.445 C2HsOH 5.13(1.66)' 1.10 . . .  
Hz0 1.47 (1.84)' 0.257 4.46 18.07 0.371 

a The entries in this table together with those of many more substances 
can be found compiled in ref 25. These properties are for liquid argon at 
87 K. ' The number in parentheses is the dipole moment for the substance 
in debyes. 

ferred. For real fluids the term is of importance only for high- 
pressure studies and/or in consideing the pressure derivatives 
of Gc. Figure 2 shows curves of GcIRT vs. R for values of y 
corresponding to those for the solvents water_and benzene at 
298 K. Included in Figure 2 is a comparison of GJRTusing the 
scaled particle theory equation of state for Pin the last term of 
eq 28 and using the "experimental value" of the hydrostatic 
pressure which in the curves shown was taken to be 1 atm. 
Actually for pressure around 1 atm the pressure term contributes 
a negligible amount to the free energy of cavity formation, and 
hence the curves labeled P = 1 are the equivalent to the sum 
of the first three terms in eq 28. Table I gives values of yfor a 
number of solvents. 

The partial molar Gibbs free energy for interaction, GI, can 
be approximated in the following manner. Suppose the inter- 
action energy of a solute molecule with a given solvent molecule 
is t , ( r ) ,  then the sum of the t ,  averaged over the configurations 
of the solvent for a mole of soluteflolecules will be E,. Since 
fie solvent is a-condensed phase, E, is approximately equal to 
H,, and hence GI can be determined in principle by integration 
of the Gibbs-Helmholtz relationship. This integration requires 
knowing the temperature dependence of the radial distribution 
function. This is not generally known and as an approximation 
it is assumed that pg(r)  is temperature independent and hence 
G, = E,. For spherically symmetric, pairwise-additive interac- 
tions 

- 

- 
GI E 2, = N Jo, t,(r)4r$pg(a2,r) dr (30) 

where p is the number density of the fluid, N is Avogadro's 
number, and g(a2,r) is a radial distribution function and measures 
the probability of finding a solvent molecular center at the dis- 
tance r from the center of a solute molecule of hard sphere ra- 
dius up. The most satisfactory and consistent approach here 
would be to obtain the radial distribution function directly from 
the scaled particle theory. Unfortunately this has not been done 
although significant progress in scaled particle theory has been 
made along these lines.1° A number of approximate functions 
based upon physically intuitive notions could be used for g(up,r), 
but this has not been done either. The original papers on the 
scaled particle theory as applied to solutions used a uniformly 
distributed solvent; that is, g(a2,r) was taken to be unity outside 
the radius up. This is not a particularly poor approximation for 
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x 1024 -X x 1026 

cm3/ cm3t t l  k,  u x 108 
Substance mol molecule K cm 

He 0.204 0.29 6.03 2.63 
Ne 0.393 1.17 35.7 2.79 
Ar 1.63 3.24 125 3.41 
Kr 2.46 4.65 169 3.67 
Xe 4.00 7.04 217 3.96 
Rn 5.86 290 4.23 

a From ref 25. 

obtaining the average energy, but it cannot be expected to ac- 
count for small differences in properties between a given solvent 
and various solutes. If unit radial distribution function is assumed, 
then the integral in eq 30 can be carried out by assuming a 
functional form of ti(r). If one considers the interaction of a po- 
larizable polar solute with a polarizable polar solvent, then a 
reasonable expression for ti(r) is19 

where Cdis is the dispersion (or London) energy constant, Cind 
is the inductive energy constant, cdip is the dipole-dipole energy 
constant, and o12 is the distance at which the dispersion and 
repulsive interactions are equal in magnitude. Substitution of eq 
31 into eq 30 and integrating yields 

- 
Gi/RT= -(16/3)(€*dis/kn - 8(€"ind+ €*dip )/kT (32) 

where t * i  = .irpCi/6ulZ3 and where the integral has been eval- 
uated from u12 to infinity. The expressions used for the dipole- 
dipole and inductive energy are, of course, the rotationally av- 
eraged terms, and, in those cases where these must be used, 
the adequacy of the approximation must be questioned. 

The contribution of the dispersion energy may be estimated 
by several theoretical expressions. The Kirkwood-Muller for- 
mulaZ0 has been one of the more successful approximationsz1 
and is given by 

where m is the mass of an electron, c is the velocity of light, a l  
and a2 are the molecular polarizabilities of the solvent and so- 
lute, respectively, and x1 and xz are the molecular magnetic 
susceptibilities of the solvent and solute (see Tables I and 11). 

Another useful form of cdis is that for the Lennard-Jones 
(6- 12) potential 

where c1  and tz are the energy parameters for the solvent and 
solute, and u1 and uz are the distance parameters of the solvent 
and solute (see Tables II and Ill). 

The inductive energy constant Cind is given byz2 

Cind = pl2a2 + I * Z z a l  (35) 

where y l  and yz are the dipole moments of the solvent and so- 
lute, and a1 and a2 are the polarizabilities of the solvent and 
solute. 

The dipole-dipole interaction constant is the coefficient of 
rr6 in the so-called Keesom orientation energy and is given 
byzz 

Cdip = (2/3)/.112~~z/kT (36) 

where y1 and yp are the dipole moments of the solvent and so- 
lute, respectively. 

For a nonpolar solute and solvent only the dispersion energy 
in eq 32 contributes. If either the solvent or the solute is dipolar 

1 I I I I 
I I 3 4 

1 I 1024 c c  

Figure 3. Ln KH vs. polarizability of inert gases in water and benzene 
at 298.15 K. 

TABLE 111. Lennard-Jones Parameters for Solvents from Gas 
Solubilitya 

3.41 3.42 3.41 3.42 
4.53 4.55 4.53 4.44 

5.26 5.25 5.22 5.26 
5.65 5.60 6.09 
5.94 5.87 5.91 
6.55 6.56 7.41 

7.11 7.03 7.11 
5.65 5.68 5.93 
5.31 5.31 
3.63 
4.79 4.67 
3.71 f 3.67 
4.36 f 4.31 
2.77 f 

5.38 5.35 5.88 

6.53 6.48 6.44 

120 122 120 

530 490 327 
496 504 440 
589 324 
543 413 
607 333 
584 519 
495 505 
573 377 
410 
142 
384 519 
255 452 
339 43 1 
79.3 

466 466 468 

a Units of u are cm, units for c lkare K. Obtained from gas soh- 
bility; see ref 25. Obtained from the heat of vaporization based upon the 
scaled particle theory: A& = RT+ a,RF'[(l + 2y)'/(l - Y ) ~ ] .  Obtained 
from ref 65 from liquid-state properties using a cell theory. e Obtained from 
ref 66 from gas-phase virial coefficients and viscosities. ' Heat of vapor- 
ization expression is not applicable to hydrogen-bonded liquids. 

but not the other, then only the dispersion term and one term in 
the inductive energy expression contribute. If both solute and 
solvent are dipolar, the entire expression given by eq 32 must 
be used. We can combine eq 28, 29, and 32 to obtain the final 
expression for the Henry law constant given by 

In KH = In (RT/V1) - (16/3)t*dis/kT- 8(t*ind + €*djp)/kT 

where y =  rpul3/6, R = u2/u1, 
the Ci are given by eq 34, 35, and 36. 

= i r ~ C ~ / 6 u ~ 2 ~ ,  and where 

D. Solubility of a Hard Sphere 
It has long been realized that a plot of the logarithm of the 

experimental Henry law constant vs. the polarizability of the 
solute for a given solvent yielded a reasonably smooth curve.23 
Equations 37 and 33 indicates that one should expect such a 
correlation and that the inert gases should define the curve be- 
cause they are monatomic and spherically symmetric. Figure 
3 shows such a curve for the inert gases dissolved in benzene 
and in water. Similar curves are obtained for all solvents studied 
thus far. The extrapolation to zero a2 of the curve through the 
inet gas points yields a finite value of In KH and, therefore, a 
nonzero solubility even though the interaction term has gone to 
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TABLE IV. Theoretical and Experimental Values ot Ln KHa 

Solvent Ln KHO Ln KHO 
(0, X IO8 cm) T. K (calcd) (obsd) 

Ar (3.40)” 87.3 10.56 10.50 
Coti6 (5.27)” 298 9.84 9.78 

*C6H14 (5.92)” 298 8.56 8.62 
CCl4 (5.35)b 298 9.31 9.43 

c7F16 (7.11)b 298 7.44 7.44 
a From ref 66. From ref 65. 

are probably more accurate than values from vapor viscosities 
or second virial coefficients. Of course, one of the advantages 
of determining 61 from solubilities is that for many liquids it is 
frequently not practicable to determine their vapor phase 
properties. 

,p .;* x 1022 ( d e p C c  

Flgure 4. -A vs. solubility interaction parameter for water and benzene 
at 298.15 K. 

zero. The change from one solute to another is accompanied 
not only by a change in polarizability and hence interaction en- 
ergy, but also by a change in hard-sphere diameter, u2. A plot 
of u2 vs. a2 for the inert gases also describes a smooth function, 
and extrapolation of this curve to a2 = 0 gives a value of u20 of 
2.55 A.24,25 The extrapolation of In KH vs. a2 is thus equivalent 
to determining the solubility of a hard sphere of diameter 2.55 
A in the particular solvent. This can be expressed as 

lim In KH = In KHO (38 )  
ffp-0 

up-2.55 A 

where KHo is the Henry law constant for hard spheres of diameter 
2.55 A. 

This ability to determine from experimental data the solubility 
of a hard sphere in a real solvent makes it possible to directly 
test the adequacy of the scaled particle theory to calculate the 
reversible work required to introduce a hard sphere into a real 
liquid solvent. Table IV compares values of In KHo obtained from 
the extrapolation techniques described above for various sol- 
vents with values of In KHo determined from the theory. The 
agreement is excellent and represents a strong confirmation of 
the validity of eq 28 as derived by the scaled particle theory. The 
results in fact are such that there is good reason to believe that 
we arcnow in possession of a much better method for calcu- 
lating Gc than for calculating Gi. 

E. Determination of an Effective Hard-Sphere 
Diameter, c1 

As stated above, there is good reason to have confidence in 
the scaled particle calculation of the energy of cavity formation 
of a hard sphere in a liquid solvent. A consequence of this is that 
if one has the solubility of the inert gases in a solvent, it is pos- 
sible to carry out the extrapolation described above and deter- 
mine In KHo in the solvent. Since the v a l e  of In KHo determined 
by this extrapolation is simply equal to G,IRT+ In (RT/V1), it 
is clear thatits value is determined only by the properties of the 
solvent ul, V I ,  T, and the hard-sphere diameter u2O = 2.55 A. 
If one takes u1 to be an unknown, then it is possible, from the 
intercept of the In KH vs. cy2 curve, to determine the hard-sphere 
diameter of the solvent u1, and Table 111 indicates values of u1 
for a number of solvents including water24-26 determined in this 
manner. Also included there are values of u1 determined from 
other more standard methods. It is of particular interest that 
“effective” hard-sphere diameters for solvent molecules have 
been determined for alkanes, cycloalkanes, aromatics, alcohols, 
amines, etc., by Wilhelm and bat tin^,^' deLigny and van der- 
Veen,28 and Liabastre and P i e r ~ t t i . ~ ~ - ~ ~  DeLigny and van der- 
Veen believe the values of u1 determined from solubility data 

F. A New Solubility Parameter and the 
Determination of tl/k 

There has been a trend in recent years to search for param- 
eters composed of physical quantities related to interaction 
energy which are linearly related to solubility. If eq 37 is rewritten 
in the form 

A = In KH + 
then it is possible to relate A to the interaction energy of the 
solute with the solvent. For a given solvent (tllk)”2 is a constant, 
and hence a plot of -A vs. ( ~ / k ) l ’ ~ a 1 2 ~  should be a straight line 
of slope 3 2 ~ p ( t l l k ) ’ / ~ / k T .  Figure 4 shows typical plots of -A 
vs. this new solubility parameter, ( ~ 2 / k ) ~ / ~ a 1 2 ~ ,  for a number of 
solutes in benzene and water. The present theory is the only one 
which correlates solubility data for solvents as diverse as water 
and benzene using a single nonadjusted solubility parameter. 

As indicated, the slope of the -A plot is proportional to 
( ~ ~ l k ) ~ ’ ~ ;  hence the experimentally determined slope permits 
the evaluation of the interaction parameter for the solvent. Table 
111 gives values of el /k determined from solubilities as described 
as well as values determined in other ways. It should be pointed 
out that the value of (cl/k) determined in the solution is not 
necessarily equal to that determined in the gas phase because 
of nonadditivity effects in condensed media.29 In general, the 
more dense the solvent and the more polarizable its molecules, 
the greater the nonadditivity correction would be and the cor- 
rection is in the direction such that (tl,soln/~l,gas) is less than unity. 
In general, the values of ( t l /k )  determined from solubility mea- 
surements for nonpolar molecules are in good accord with values 
from gas-phase v i a l  coefficients and viscosities. It is a direct 
benefit of the present theory that the LennardJones parameters 
of a solvent (a and d k )  can be determined directly from the 
solubility of the inert gases in that solvent. 

G, Thermal Properties of Dilute Solution 

+ t*dip)/kr - Z,/m - In (Rr/V1) 
= - 3 2 ~ p ( t ~ € ~ ) ~ / ~ a ~ ~ ~ / s k r  (39 )  

Processes 
The Gibbs free energy of solution can be calculated directly 

from 

AG, = R r  In KH = G, + Gi + R r  In (Rr/V1) (40) 

where G, and Zi are given by eq 28 and 32,  respectively. It is 
worth noting that AG, corresponds to the Gibbs free energy 
change in transferring 1 mol of gaseous solute at unit fugacity 
in atmospheres to a hypothetical unit mole fraction state for the 
solute determined from the properties of an infinitely dilute so- 
lution of the solute in a given solv_ent. The molar enthalpy of 
solution is given by eq 14, where H, is given by 
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TABLE V. Comparlson of Contrlbutlons to the Solublllty of Ar and N2 In Benzene and Water at 298.15 K a  

- 
Solute/solvent Gc HC Gland HI AGs a Hs A Ss V2 

Ar/benzene Calcd 3677 4060 
Obsd . . .  . . .  

Ar/H20 Calcd 5268 840 
Obsd . . .  . I .  

N2/benzene Calcd 4142 4640 
Obsd . . .  . . .  

N2/H20 Calcd 5199 828 
Obsd . . .  . . .  

a Units of G and Hare cal/mol, S is in cal/(mol deg), and v2 is cm3/mol. 

where ap is the thermal expansion coefficient of the solvent and 

The pagal molar enthalpy of interaction, ii, is given by eq 
32 since Gi has been assumed equal to Hi. This assumption 
amounts to assuming tke entropy change associated with the 
charging of the cavity, Si, is zero. This is certainly not correct 
and SI should be a small negative quantity. The molar entropy 
of solution is given by 

AS, = -(aAG,/aT)p = s, + si - R In (RT/V,)  + apRT (42) 

where 

R =  U ~ / U ? .  

- 
s, = (Z, - & ) / T  (43) 

and si is usually taken equal to zero as discussed above. The 
result of this is that the calculated values of AS, should be 
slightly more negative. The molar heat capacity of solution 
is26,30 

A C ~  = E, + Ci - R + P ~ ~ R T  + UP (aapiaqP (44) 

where 
- 
c, = [2/ r - ap + ~ ~ - 1  (dffp/a q P ] i c r  

-R[YaPr41 - Y)212[(1 - YI2 + 6( 1 - y ) R  4- 3(4y + 5)R2]  (45) 

(46) 

The partial molar volume of the solute at infinite dilution is given 
by eq 15 where 

- 
v, = 82.05(&/ffp)(Zcr/Rq + N i ~ ~ 2 ~ / 6  (47) 

- 
H,' is given by E, less the cubic term in Rand eq 48 applies for 
systems not involving dipole-dipole interactions. 

Figure 5 illustrates the importance of cavity thermodynamics 
for water and benzene at 298 K. Although water is frequently 
referred to as an abnormal solvent, one sees in Figure 5 that the 
reversible work of cavity formation for water and benzene are 
functionally very similar: only the magnitudes differ. The enthalpy 
and entropies of cavity formation, however, behave quite dif- 
ferently. In benzene most of the work of cavity formation goes 
toward the enthalpic maintenance of the excluded volume and 
only a small contribution to the entropy or configurational ex- 
clusion of volume. Just the opposite is the case with water. This 
difference shows up not specifically because of the scaled 
particle theory, but because of the use of the experimental value 
of the thermal expansion coefficients which introduces implicit 
information about the liquid structure of the solvent into the 
theory. The importance of the scaled particle theory is that it 
makes it natural to consider cavity thermodynamics explicitly 
in terms of molecular properties of the solute and the thermo- 
dynamics properties of the solvent. 

16 

14 

12 

10 

8 

c 

4 

( 

-3033 

-3248 

-2919 

-2528 

. . .  

. . .  

. . .  

. . .  

3969 
4167 
629 1 
6274 
4548 
457 1 
6943 
6720 

678 
297 

-2757 
-2680 

1372 
1016 

-2249 
-2681 

-11.0 
-13.0 
-3 1 .O 
-30.0 
-10.7 
-11.9 
-30.8 
-31.5 

43 
43 
26 
27 
52 
53 
32 
32 

0 . 2  0 . 4  0.6 0.8 1.0 1 . 2  1 . 4  

i - u2/a1 

Flgure 5. Thermodynamic properties of cavity formation in water and 
benzene at 298.15 K. 

Table V compares the contributions of the various cavity and 
interaction terms to the solution properties of argon and nitrogen 
in benzene and water as examples of two diverse solvent sys- 
tems. It should be pointed out that the equations given above do 
not take into account the variation of u with t e m p e r a t ~ r e . ~ ' . ~ ~  
Although the effect is not large over small temperare  range^,^^^^^ 
it can be important for nonspherical molecules over any ex- 
tended temperature range. 

H. Mixed Solvents, Electrolyte Solutions, and 
Salt Effects 

The reversible work of introducing a hard-sphere solute into 
a fluid mixture containing m components whose molecules have 
hard cores can be obtained in a manner similar to that used to 
obtain eq 28. The result is6tz9 
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where us is the diameter of the solute molecule, yi = (916). 
Zipiuii, and pj and ui are the number density and the hard-sphere 
diameter of the jth component. The contribution from the in- 
teraction term is similarly given by 

- 32 rn 4 
Gi = -- p.6 .g .3 - - 

g i = l  ' 3 

where pi and ps are the dipole moments of the solute and sol- 
vent, respectively, and csi and aSi are the mixed pair potential 
parameters for the solute and the flh component. The Henry law 
constant is then 

The relationships given above can be used to calculate so- 
lution properties of a solute in a mixed solvent. Shoor and 
G ~ b b i n s ~ ~  used them to investigate the nature of the solubility 
of a nonpolar gas (argon) in a concentrated electrolyte solution 
(KOH) as a function of concentration and temperature. They 
found the salting-out effect well predicted by the theory and that 
the theory proved superior to the standard electrostatic theories 
of Debye and McAulay3'j and Conway, Desnoyers, and 
Smith.37 

Masterton and Lee38 also applied this theory to the salting-out 
of nonpolar solutes from electrolytes including in their study of 
NaCl and KI solutions. They found the theory gave excellent 
results for systems in which the molecular and ionic diameters 
were small. For larger molecules the quantitative agreement was 
less good, but qualitatively the behavior was still correct and 
adjustments to the molecular diameters were capable of bringing 
about good agreement. As a result, Masterton suggests obtaining 
the ionic radii of ions in solution from the theory.39 Schrier et 
al.40*41 found the theory applicable to salting-out of polar mol- 
ecules from alcohol-water solutions containing NaCI, NaBr, and 
Nal. 

Hirata and A r a k a ~ a ~ ~  used eq 47 to determine v, of ionic 
solutions, and they were able to show that V, corresponds to the 
intrinsic volume of ions in dilute aqueous solution. They indicate 
that the expressions for the intrinsic volume of Stokes and 
Robinson,43 H e ~ l e r , ~ ~  Conway et al.,45 and Glueckauf4'j were 
incomplete and inferior to that obtained from the scaled earticle 
theory.Jhey then subtract V, from the experimental V2 and 
obtain Vi, the interaction volume. For salt solutions Vi is fre- 
quently a large negative number corresponding to electrostric- 
tion. 

Ill. Discussion and Concluding Remarks 
As stated at the outset no effort has been made to review the 

formalism of the scaled particle theory. Instead one aspect of 
the scaled particle theory (that aspect which permits the c_al- 
culation of cavity work) has been used to calculate one term, G,, 
in the theory of dilute solutions. Contrary to comments in the 
literature that the scaled particle theory as applied to solutions 
refers specifically to hard-sphere fluids, the theory as developed 
above applies to fluids whose molecules have "effective" 
spherical hard cores but whose soft potential determines the 
pressure, density, and their derivatives. The theory is not a rig- 
orous statistical mechanical theory derived from the molecular 
properties of the solute and solvent. Such a theory would be 
unlikely to yield the agreement for the diversity of molecules that 
have been treated with the present theory. Neff and McQuarrie4' 
have attempted to develop a more rigorous theory based upon 
the perturbation theory of Barker and Henderson.48 They start 

with the equation of state of a reference hard-sphere fluid mix- 
ture from which they obtain 

In KH = p2HS/RT+ P ~ ~ O ' I R T +  In (RT/V1) (52)  

where psHS is the chemical potential of the solute in the refer- 
ence hard-sphere fluid and F~~~~ is the correction for the soft 
potential which exists between the solute and solvent. pZHS is 
obtained directly from he equation of state of a hard-sphere 
mixture as approximated by the Percus-Yevick compressibility 
equation. The expression they obtain for pZHSIRT is identical 
with GJRT given by eq 23 except that consistency in their 
derivation requires that the pressure term in eq 28 be given by 
the hard-sphere pressure which may be orders of magnitude 
greater than the experimental pressure. The effect of retaining 
the theoretical SPT pressure in the cubic term in R is illusgated 
in Figure 1. For water as a solvent and for R equal to unity GcIRT 
is 6.9 using the SPT pressure, whereas it is 4.6 using the ex- 
perimental pressure of 1 atm. The deviation for benzene as the 
solvent is even greater, the value of GJRTcalculated using the 
theoretical pressure being almost a factor of 2 larger than that 
calculated using Pequal to 1 atm. The reason for this is that the 
pressure required to confine a fluid of hard spheres to the molar 
volume of most liquids is very great. The pressure-volume work 
required to produce a cavity under these conditions is corre- 
spondingly very large. The Neff and McQuarrie approach must 
correct for this difference in the term p2,0r. They show that p2C0r 
is made up of a number of terms including the term G, and a term 
involving an integral they designate as /I which accounts for 
the change in the interaction among the solvent molecules as 
a result of the disturbance in the radial distribution function of 
the solvent by the solute. This term is required explicitly in the 
Neff and McQuarrie treatment because they have used a true 
hard-sphere reference state. The major contribution of this term 
is included in the term G, as obtained by the scaled particle 
theory when the experimental properties of the real fluid in- 
cluding the pressure terms are used. Their approach, which is 
computationally complex, requires calculating the integral I1 
whose integrand contains the product of the solvent-solvent pair 
potential and the derivative of solvent radial distribution function 
with respect to the number of solute molecules. In light of the 
uncertainty of both the pair potential and radial distribution 
function for most real fluids, it is doubtful that one can evaluate 
this integral as well as would be required to correct for the high 
PV work contribution in p2Hs caused by using the hard-sphere 
equation of state rather than using the experimental hydrostatic 
pressure. Neff and McQuarrie treated the system neon in liquid 
argon where the effect of the solvent-solvent term is somewhat 
less important and the approximation in I l l  is somewhat less 
demanding than for most solvents. In this case they found their 
approach yielded somewhat better results than the approach 
discussed here. The slightly better agreement with experiment 
may be fortuitous, but there is no doubt that their theory has the 
satisfying element of not mixing theoretical and empirical results 
in the free energy expression. They do nevertheless use em- 
pirical expansivities and compressibilities for the heat and vol- 
ume expressions similar to the method presented here rather 
than using hard-sphere theoretical values. Hermann49 has used 
the Neff-McQuarrie approach in considering hydrocarbon sol- 
ubility in water, but the number of approximations, assumptions, 
etc., makes it difficult to evaluate its success, but it appears to 
be substantially poorer than the simpler approach suggested 
here. 

Tiepel and Gubbinsso have also used eq 49 to treat solubility 
in fluid mixtures including electrolytes. They use the hard-sphere 
equation of state suggested by Carnahan and Starling5' to obtain 
~ ~ ~ ~ / R T a n d  include the theoretical hard-sphere pressure term. 
They do not, however, include the solvent disturbance term in 
pZCorlRTas required by Neff and McQuarrie. Ignoring this term 
makes the computation simpler, but the approach does not have 
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theoretical consistency. Although the Carnahan and Starling 
equation of states agrees with machine calculations for a rigid 
sphere fluid better than does scaled particle theory, it is worth 
mentioning that when used to calculate the cavity work term, 
it has not been shown to have the correct thermodynamic limit 
for cavities of large radius. Although no careful examination of 
the work of Tiepel and Gubbins has been made, the values of 
g and d k  used in their work are not those usually found in the 
literature, and there is reason to believe that without careful 
selection of u and d k  for both the solute and the solvent it would 
yield poorer results than the scaled particle approach. 

The scaled particle theory of nonaqueous and aqueous so- 
lutions has been applied to a host of solution problems, many 
of which have been referred to above. Additional applications 
include examining (1) the problem of solubility in fused salts52 
and liquid metals;53 (2) the problems correlating transfer prop- 
erties between solvents, for instance, between H20 and 
D2024325354 or between water and nonaqueous solvents (the 
transfer between H20 and nonaqueous solvents could be useful 
in establishing criteria for a generalized pH scale);55 (3) the 
problem of theoretically relating partition coefficients to mo- 
lecular parameters (these can be further related to biomedical 
problems);56 (4) the problem of relating ionization kinetics and 
thermodynamics to molecular properties and isolating those 
contributions which originate from ionized species or neutral 

( 5 )  the properties of a well-defined reference 
molecule (a hard sphere) in a r e a l ~ o l v e n t ~ ~  and hence separating 
the solvolysis59 process into a part which can be calculated with 
reasonably high accuracy (the cavity term) and a less well-de- 
fined term involving solute-solvent interactions. 

There are a number of ways in which the present theory can 
be further investigated and possibly improved. Clearly the scaled 
particle theory itself can be extended to calculate W(R,p) more 
accurately by utilizing more of the exact relationships which have 
been discovered and/or utilizing more structural information as 
suggested by Stillinger for aqueous solutions.60 Another im- 
provement could be made for nonspherical molecules by in- 
cluding terms describing the properties of rigid convex bod- 
ies.61,62 The improvement here is not likely to be great since the 
effective diameter of a molecule cannot be determined to better 
than a few hundredths of an angstrom, and this is enough to mask 
the effects of a nonspherical core. The inclusion of a tempera- 
ture variation in the effective LT may aide in correlating enthalpy 
changes for nonspherical, nonrigid molecules. The greatest 
improvement could be ob_tained by utilizing more realistic in- 
termolecular potentials in G63,63 and by using the scaled particle 
theory or some other means to provide Emore realistic radial 
distribution function in the evaluation of Gi. 

In conclusion, the scaled particle theory has been applied to 
aqueous and nonaqueous solutions. There can be no question 
that it provides an opportunity to investigate solution thermo- 
dynamics in a manner which has not been available up to this 
time. This comes about because there is no comparable way 
to account for the enthalpy and entropy changes associated with 
the exclusion of volume in a solvent. This is the main reason the 
continuum electrostatic theories are lacking in interpreting dilute 
solutions of molecules in electrolytes. One important feature of 
the present theory is that the structure of the solvent (other than 
its pressure, density, and diameter and their temperature de- 
rivatives) are not explicitly considered, and hence water and 
other solvents are equally well handled by the theory. 

IV. Addendum 

Since the submission of the original manuscript, a number 
of significant contributions have been made to the general area 
of the scaled particle theory of fluids and its application to the 
investigation solution properties. A few of these are: 

(1) Mandell and R e i d 7  have utilized a set of six conditions 

required by the scaled particle theory to determine six coeffi- 
cients in qr,p) (eq 21). They find G3 = 0 as required and G4 and 
G5 are nonzero but small. The equation of state determined'using 
all of these conditions is somewhat improved over that obtained 
using G3 and G4 equal to zero. These results could be used to 
generate a presumably improved but more complex expression 
for the cavity work term. 

(2) Philip and Jolicoeur68 used the scaled particle approach 
to calculate the thermodynamic changes associated with the 
transfer of a hard-sphere solute from several isotopic water and 
methanol solvents. They conclude that the overall importance 
of solvent structural effects on the properties of nonpolar solutes 
in aqueous solution seem overstated and also that the isotope 
effect on trensfer functions appears built into the bulk properties 
of the solvents. 

Desroiers and L u ~ a s ~ ~  calculated the transfer properties of 
salts from H20 to 3 m urea and to D20 with apparent good suc- 
cess. 

(3) Masterton, Polizzotti, and W e l l e ~ ~ ~  investigated the salt 
effects of the complex-ion electrolyte t-[CO(en)2NCSCI] Br on 
the solubility of argon. They use the experimental salting coef- 
ficients to determine the ionic radius of the complex ion and find 
it proves a useful method of interpreting the molar volumes of 
electrolytes in agreement with the conclusion of Hirata and 
A r a k a ~ a . ~ ~  Conway, Novak, and Laliberte7' discuss the appli- 
cability of the scaled particle approach to salting-out behavior 
on the basis that it obscures the structural aspects of the phe- 
nomenon. They do not make any comparisons or calculations 
using the theory. 

Masterton7' has considered salting coefficients for gases 
dissolved in seawater using the scaled particle approach and 
finds reasonably good agreement between theory and experi- 
ment. The predicted temperature coefficients have the right sign 
but are only about half the observed values. 

(4) L u ~ a s ~ ~  has made model calculations for the transfer of 
a hard-sphere solute from water to other solvents using the 
scaled particle approach and also the modification suggested 
by Stillinger. The author concludes that the solvent dimensions 
are the important parameters in determining the sign of the free 
energy transfer from one solvent to another. 

( 5 )  The application of the theory with modification to the 
calculation of Henry's law constant has been published by Saito 
et al.,74 Benson and K r a u ~ e , ~ ~  Geller, Battino, and Wilhelm,76 
and deLigny and van derVeem7' The latter work is concerned 
with a system in which one component is very polar. They find 
that complex formation between the solute and solvent can be 
detected and the association constant can be approximately 
evaluated. 

(6) D ~ V O ~ ~ ~  has used the approach to consider the ther- 
modynamics of transfer properties in such manner as to define 
a molar structural entropy change and relates this to structural 
ordering of the solvent. He uses a hybrid between the scaled 
particle work term and the Carnahan-Starling equation of state 
for the pressure of a hard-sphere fluid and calculates the entropy 
change for introducing a hard sphere into a hard-sphere fluid 
whose molar volume is thatsf the s_olvent. In essence he divides 
the term S, into two parts, SHS + Sst, where SSH is the entropy 
change for cavity formation in a truly hard-sphere solvent and 
S,, is the structural term. The results obtained are quite inter- 
esting, and the approach is related to the discussion earlier on 
the use of experimental volumes, etc., and hard-sphere fluid 
properties. 

V. Glossary of Symbols 
a molecular polarizability 
ap  thermal expansion coefficient 
& isothermal compressibility coefficient 
Bp! second solute-solvent virial coefficient 
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third solute-solvent virial coefficient 
velocity of light 
interaction energy coefficient for the designated type 
energy, where i is dis, ind, dip, rep, etc. 
partial molar heat capacity of cavity formation 
partial molar heat capacity of interaction 
surface tension 
thickness of the surface of tension 
Lennard-Jones energy parameter 
integrated interaction energy, where i is dis, ind, 
dip, and rep 
fugacity 
conditional probability 
partial molar Gibbs free energy of cavity formation 
partial molar Gibbs free energy of interaction 
molar Gibbs free energy of solution 
partial molar enthalpy of cavify formation 
partial molar enthalpy of interaction 
molar enthalpy of solution 
Boltzmann constant 
where i is 0, 1, or 3 are coefficients of the cavity 
radius to the ith power in the work of cavity formation 
expression 
Henry law constant 
mass of an electron 
chemical potential or dipole moment 
Avogadro's number 
number of molecules 
probability of finding a cavity of radius r 
pressure 
number density (N/V) 
position of a molecular center 
radius of a cavity 
gas constant 
ratio of hard sphere diameters u2161 
hard-sphere diameter 
partial molar entropy of cavity formation 
partial molar entropy of interaction 
molar entropy of solution 
absolute temperature 
molar volume of the solvent 
partial molar number of the solute 
partial molar volume of cavity formation 
reversible work of cavity formation 
reduced density (7rpu3/6) 
molecular diamagnetic susceptibility 
mole fraction 
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